Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques
نویسندگان
چکیده
Molecular dynamics modeling has provided a powerful tool for simulating and understanding diverse systems – ranging from materials processes to biophysical phenomena. Parallel formulations of these methods have been shown to be among the most scalable scientific computing applications. Many instances of this class of methods rely on a static bond structure for molecules, rendering them infeasible for reactive systems. Recent work on reactive force fields has resulted in the development of ReaxFF, a novel bond order potential that bridges quantum-scale and classical MD approaches by explicitly modeling bond activity (reactions) and charge equilibration. These aspects of ReaxFF pose significant challenges from a computational standpoint, both in sequential and parallel contexts. Evolving bond structure requires efficient dynamic data structures. Minimizing electrostatic energy through charge equilibration requires the solution of a large sparse linear system with a shielded electrostatic kernel at each sub-femtosecond long timestep. In this context, reaching spatio-temporal scales of tens of nanometers and nanoseconds, where phenomena of interest can be observed, poses significant challenges. In this paper, we present the design and implementation details of the Purdue Reactive Molecular Dynamics code, PuReMD. PuReMD has been demonstrated to be highly efficient (in terms of processor performance) and scalable. It extends current spatio-temporal simulation capability for reactive atomistic systems by over an order of magnitude. It incorporates efficient dynamic data structures, algorithmic optimizations, and effective solvers to deliver low per-timestep simulation time, with a small memory footprint. PuReMD is comprehensively validated for performance and accuracy on up to 3K cores on a commodity cluster (DoE/LLNL/Hera). Potential performance bottlenecks to scalability beyond our experiments have also been analyzed. PuReMD is available over the public domain and has been used to model diverse systems, ranging from strain relaxation in Si-Ge nanobars, water-silica surface interaction, and oxidative stress in lipid bilayers (biomembranes).
منابع مشابه
Reactive Molecular Dynamics: Numerical Methods and Algorithmic Techniques
Modeling atomic and molecular systems requires computation-intensive quantum mechanical methods such as, but not limited to, density functional theory (DFT) [11]. These methods have been successful in predicting various properties of chemical systems at atomistic detail. Due to the inherent nonlocality of quantum mechanics, the scalability of these methods ranges from O(N3) to O(N7) depending o...
متن کاملPuReMD Manual (Purdue Reactive Molecular Dynamics Program)
This manual is for the two simulation programs which have come to existence as a result of our ReaxFF realization efforts. Our initial efforts have led to the SerialReax program, which is a sequential implementation for ReaxFF. SerialReax has helped us in verifying the accuracy of our implementation in C against the original ReaxFF code which was developed in Fortran, such a task would be cumbe...
متن کاملParallel Genetic Algorithm Using Algorithmic Skeleton
Algorithmic skeleton has received attention as an efficient method of parallel programming in recent years. Using the method, the programmer can implement parallel programs easily. In this study, a set of efficient algorithmic skeletons is introduced for use in implementing parallel genetic algorithm (PGA).A performance modelis derived for each skeleton that makes the comparison of skeletons po...
متن کاملMolecular Dynamics Simulation of Al/NiO Thermite Reaction Using Reactive Force Field (ReaxFF)
In this work, the thermal reaction of aluminum (Al) and nickel oxide (NiO) was investigated by molecular dynamics simulations. Some effective features of reaction such as reaction temperature, the reaction mechanism, and diffusion rate of oxygen into aluminum structure were studied. ReaxFF force field was performed to study the Al/NiO thermite reaction behavior at five different temperatures (5...
متن کاملPG-PuReMD: A Parallel-GPU Reactive Molecular Dynamics Package
We present a parallel/GPU implementation of our open-source reactive molecular dynamics code, PG-PuReMD (Parallel GPU-Purdue Reactive Molecular Dynamics). Using a variety of innovative algorithms and optimizations, PGPuReMD achieves over 350x speedup compared to a single CPU implementation on a cluster of 36 state of the art GPUs. This is a significant development, since it enables simulations ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Parallel Computing
دوره 38 شماره
صفحات -
تاریخ انتشار 2012